


SHAREATE TOOLS LTD.

Marketing Office Add: No 6, Weixi Road, Suzhou Industrial park, Jiangsu, China Post Code: 215121

Tel: 86 (512) 62851657 Fax: 86 (512) 62851661

E-mail: shareate-sz@shareate.com

CEMENTED CARBIDE ROD

COMPANY PROFILE

Registering and establishing in Suzhou Industrial Park on August 25, 2005, Shareate Tools Ltd. has been an international manufacturing service company with the integration of research & development, manufacturing, sales and service. The sale contents include professional cemented carbide products, mining drilling tools and mine services. It was overall-changed and established by Shareate Tools Ltd. in 2012. Many branches and subsidiaries are involved in the company, including rock drill tools department, mining carbide department, precision component department, profile department, Wuhan Shareate Tools Ltd. and so on.

In the aspect of mining rock drilling tool industry, a research and manufacturing base of mining cone bit and water well bit with the leading technology and scale has been firstly built. The company is known as the representative enterprise with advanced productivity in China's mining rock drilling tool industry. In our company, flexible production and manufacturing system has been adopted to achieve a flexible production line with numerical control machining center being the main body. Besides, a complete set of manufacturing equipment such as forging, heat treatment, numerical control machining center and advanced testing equipment are also well assembled in the company. The main products include 6 1/4-13 3/4 series of mining bits, and other size series of mining bits can be designed and manufactured according to the user's requirements. The products manufactured by our company enjoy a good reputation in the domestic and international market because of our high standard in material section, high level in technology and reliability.

In the aspect of cemented carbide industry, a high-level technology manufacturing and research base of oil and mining tungsten carbide insert has been built. The main products are listed as follows: tungsten carbide insert for oil drill, tungsten carbide insert for mining, base bracket for diamond composite sheet, cemented carbide bar, materials for cemented carbide mould, cermet series, precision components, et al. The product are with the characteristics of wide range, complete varieties, and rich grades. The tungsten carbide insert and tungsten carbide substrate for oil and mining are located in the advanced position both in the domestic as well as around the world. Moreover, the products have been widely applied in products for oil and mining such as the cone bit, the top hammer bit, the downhole bit, the shield cutter, thanks to their excellent using performance and stability.

In the recent years, our products are exported to more than 20 countries and regions, including Australia, Peru, Chile, Japan, South Korea, the United States, Brazil, Russia, Mexico. Long-term and stable business relations with many internationally famous enterprises have been established at present. To achieve sustainable, rapid and efficient development, we strive to become an international manufacturing service provider in the field of cemented carbide and rock drilling tools.

ADVANCED MANUFACTURING EQUIPMENT

Spray Granulation

Dry-bag Isostatic Pressing Machine

ADVANCED INSPECTION EQUIPMENT

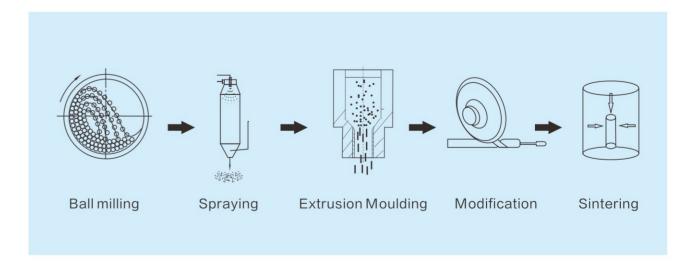
Scanning Electron Microscope/ Energy Spectrometer

Microhardness Tester

ZEISS Metallography Microscope

Projector

LECO Carbon Analyzer


LECO Oxycen Analyzer

FINE GRAIN ROD PRODUCT CATEGORY

Product Type

Product	WC+		Grain size	Density (g/cm³)			Flexural Strength	Fracture Toughness	ISO Category
Model			(µ m)		HRA		(MPa)	(MPa • m ¹²)	
XR06F	94	6	submicron	14.90	93.1	1810	>3900	9.0	K05-K20
XR09U	91	9	Superfine	14.45	93.8	1930	>4100	8.0	K05-K10
XR10S	90	10	submicron	14.40	91.6	1560	>3900	12.0	K30-K40
XR10ST	90	10	submicron	14.40	91.8	1580	>4000	11.7	K30-K40
XR10SD	90	10	submicron	14.40	92.1	1640	>4000	11.5	K30-K40
XR12U+	88	12	Superfine	14.10	92.5	1717	>4000	9.6	K20-K30
XR12UF	88	12	Superfine	14.10	92.6	1720	>4200	9.5	K20-K30

* Process Demonstration

XR06F

Characteristic:

Submicron tungsten carbide particles;

Good wear resistance.

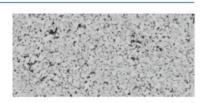
Application:

High-speed milling and drilling;

Processing hardened steel, plastic, fiber reinforced materials, aluminum alloy, graphite, etc.

XR09U

Characteristic:


Ultrafine tungsten carbide particles;

Sharp edge, extremely wear-resistant.

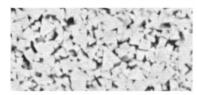
Application:

High-speed milling and drilling;

Processing hardened steel, plastic, fiber reinforced materials, aluminum alloy, graphite, etc.

XR10S

Characteristic:

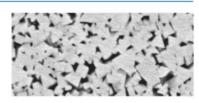

Submicron tungsten carbide particles;

Good wear resistance and toughness.

Application:

Low speed machining, intermittent cutting;

Processing aluminum alloy, cast iron, carbon steel, stainless steel, etc.

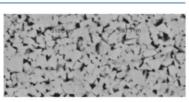


XR10ST

Characteristic: Submicron tungsten carbide particles, optimize particle size

Have the best combination of hardness and toughness.

Medium speed, high feed cutting; Processing copper alloy, carbon steel, cast iron, alloy steel, stainless steel, etc.


XR10SD

Submicron tungsten carbide particles, with optimized formulation

High wear resistance and toughness.

Medium speed, medium feed cutting;

Processing steel, cast iron, stainless steel, carbon steel, titanium alloy, nickel alloy, etc.

XR12U+

Characteristic:


Ultrafine tungsten carbide particles;

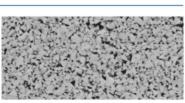
Good wear resistance.

Application:

High speed milling;

Processing aluminum alloy, copper alloy, carbon steel, stainless steel, etc.

XR12UF

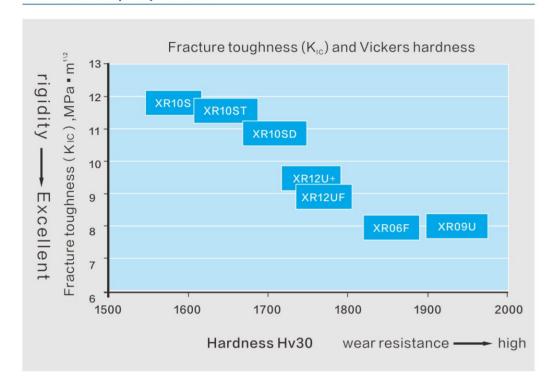

Characteristic:

Ultrafine tungsten carbide particles, with special additives;

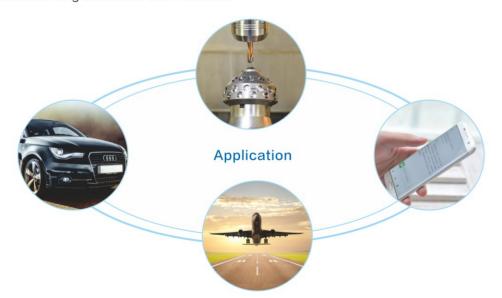
Good combination of wear resistance and toughness.

High speed milling;

Processing aluminum alloy, copper alloy, alloy steel, carbon steel, stainless steel, titanium alloy, nickel alloy, etc.

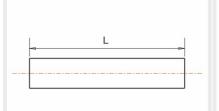

Model Selection (★: first selection; O: secondary selection)

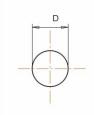
	ocessing aterials	Tool	type	XR06F	XR09U	XR12U+	XR12UF	XR10SD	XR10ST XR10S
		Dri	ll bit					0	*
Р	Steel	End mill	Rough machining						*
		Ena mili	Fine machining		*	*	*		0
		Dri	ll bit					0	*
M	Stainless steel	F 1 : 11	Rough machining					*	0
	31001	End mill	Fine machining		0		*		
		Dri	ll bit					0	*
K	Cast iron	Cool coil	Rough machining						*
		End mill	Fine machining					0	0
		Dri	ll bit						*
Ν	Non-ferrous		Rough machining						*
		End mill	Fine machining	*	*	*	*		
		Dri	ll bit					0	*
S	Heat-resistant alloy	F 1 : 11	Rough machining					0	0
		End mill	Fine machining	*	*		*	0	0
	High	Dri	ll bit					0	
Н	hardness		Rough machining				*		
	materia	ria End mill	Fine machining	*	*				
	Common d	Dri	ll bit	*	*			0	
Other	Compound material		Rough machining						
		End mill	Fine machining	*	*	0	0		


		Com	Comparison table for brands				
Model	Sandvik	Guhring		KFC	IMC		
XR10S		DK400N		K40XF	UF10		
XR10ST/XR10SD	H10F	DK460UF	CTS20D	K40UF	UF10N		
XR06F		DK105	MG12	K6UF	UF1		
XR12U+/XR12UF		DK500UF	TSF44	K44UF	UF12		
XR09U	PN90	K55SF	TSF22	K55SF	UF09		

www.shareate.com SHARE TOOLS LTD.

Material properties


- Use raw materials with high purity and high quality after strict screening
- Advanced production equipment and unique manufacturing technology to achieve stable quality and short lead time
- Advanced quality assurance system
- Unremitting development of new materials
- Build a strong customer service team



SOLID ROUND ROD (METRIC)

Diameter

D(mm)

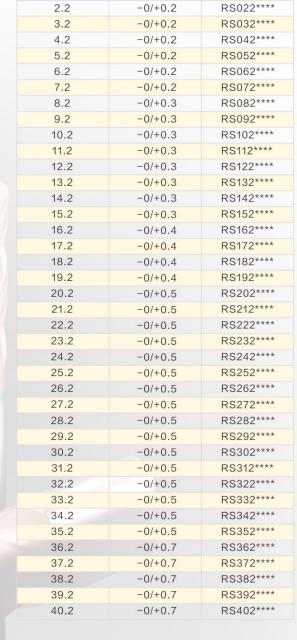
(mm)

Series

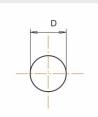
number

*** Ordering example**

The order brand is XR10S, the outer diameter is 8.2mm, and the length is 330mm, which is indicated by RS082330S.


Length(mm)	Tolerance(mm)
≤150	+0.5/+1.0
>150	+1.0/2.0

* The following services are available



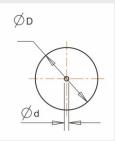
SOLID ROUND ROD (ENGLISH SYSTEM)

*** Ordering example**

Order brand xr10s, 1/8 "O.D., 13-1/8" long, as RS034333s. British specifications need to be customized.

Tolerance(Inch)	
+1/8 ~ +3/8	

* The following services are available



Diameter	Length	Series
D(Inch)	L(Inch)	number
1/8	13-1/8	RS034333S
1/7	13-1/8	RS038333S
1/6	13-1/8	RS042333S
1/6	13-1/8	RS046333S
1/5	13-1/8	RS050333S
1/5	13-1/8	RS054333S
2/9	13-1/8	RS058333S
2/9	13-1/8	RS062333S
1/4	13-1/8	RS066333S
2/7	12-1/8	RS074307S
2/7	12-1/8	RS078307S
1/3	12-1/8	RS082307S
1/3	12-1/8	RS086307S
1/3	12-1/8	RS090307S
3/8	12-1/8	RS094307S
3/8	12-1/8	RS098307S
2/5	12-1/8	RS102307S
2/5	12-1/8	RS106307S
3/7	12-1/8	RS110307S
4/9	12-1/8	RS114307S
4/9	12-1/8	RS118307S
4/9	12-1/8	RS122307S
1/2	12-1/8	RS126307S
1/2	12-1/8	RS130307S
5/9	12-1/8	RS138307S
5/9	12-1/8	RS145307S
5/8	12-1/8	RS161307S
2/3	12-1/8	RS177307S
3/4	12-1/8	RS193307S
4/5	12-1/8	RS209307S
7/8	12-1/8	RS225307S
8/9	12-1/8	RS241307S
1	12-1/8	RS257307S

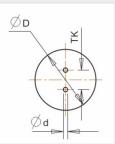
SINGLE STRAIGHT HOLE ROUND ROD

* Ordering example

The order model is XR10ST, outer diameter is 7.2mm, and length is 330mm, which is indicated by RC072330ST.

Length(mm)	Tolerance(mm)
≤150	+0.5/+1.0
>150	+1.0/2.0

* The following service are available



D(mm)	(mm)	d (mm)	(mm)	number
2.2	-0/+0.2			RC022***
3.2	-0/+0.2			RC032***
4.2	-0/+0.2	0.2~1.00	±0.05	RC042***
5.2	-0/+0.2	0.2	_0.00	RC052***
6.2	-0/+0.2			RC***062***
7.2	-0/+0.2			RC***072***
8.2	-0/+0.3			RC***082***
9.2	-0/+0.3			RC***092***
10.2	-0/+0.3	1.00~2.00	± 0.15	RC***102***
11.2	-0/+0.3			RC***112***
12.2	-0/+0.3			RC***122***
13.2	-0/+0.3			RC***132***
14.2	-0/+0.3			RC***142***
15.2	-0/+0.3			RC***152***
16.2	-0/+0.4			RC***162***
17.2	-0/+0.4			RC***172***
18.2	-0/+0.4	1.45~6.00	±0.2	RC***182***
19.2	-0/+0.4			RC***192***
20.2	-0/+0.5			RC***202***
21.2	-0/+0.5			RC***212***
22.2	-0/+0.5			RC***222***
23.2	-0/+0.5			RC***232***
24.2	-0/+0.5			RC***242***

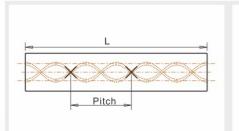
Diameter Tolerance Inner Tolerance Series

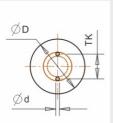
DOUBLE STRAIGHT HOLE < ROUND ROD

Diameter D(mm)	Tolerance (mm)		Tolerance (mm)	Inner diameter d (mm)	Tolerance (mm)	Length L(mm)	Series number
3.2	0.1~0.3	1.5	±0.15	0.5	±0.10	330	RP033*****
4.2	0.1~0.3	2	±0.20	0.6	± 0.10	330	RP043*****
5.2	0.1~0.3	2.6	±0.20	0.8	± 0.10	330	RP053*****
62	0.1~0.3	2.9	±0.20	1	± 0.10	330	RP062*****
8.2	0.1~0.4	3.8	±0.20	1	± 0.15	330	RP082*****
8.2	0.1~0.4	2.5	±0.20	0.8	± 0.15	330	RP082*****
10.2	0.1~0.4	4.8	±0.30	1.4	± 0.15	330	RP102*****
10.2	0.1~0.4	2.5	±0.30	0.8	± 0.15	330	RP102*****
12.2	0.1~04	5.85	±0.40	1.75	± 0.15	330	RP122*****
12.2	0.1~04	3.3	±0.40	1.2	± 0.15	330	RP122*****
13.2	0.2~0.5	5.85	± 0.50	1.75	±0.25	330	RP132*****
13.2	0.2~0.5	4.5	±0.50	1.4	±0.25	330	RP132*****
14.2	0.2~0.5	6.8	±0.50	1.75	±0.25	330	RP142*****
14.2	0.2~0.5	4.8	±0.50	1.5	±0.25	330	RP142*****
15.2	0.2~0.5	4.8	±0.50	1.5	±0.25	330	RP152*****
16.2	0.2~0.6	7.8	± 0.50	2	±0.25	330	RP162*****
16.2	0.2~0.6	4.8	±0.50	1.5	±0.25	330	RP162*****
18.2	0.2~0.6	6	±0.50	2	±0.30	330	RP182*****
20.2	0.3~0.8	9.8	± 0.50	2.5	±0.30	330	RP202*****
25.2	0.3~0.8	10	±0.50	3	±0.30	330	RP252*****

* Ordering example

The order model is XR10ST, outer diameter is 8.2mm, and length is 330mm, which is indicated by RP082330ST.

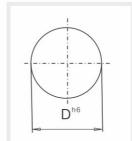

Length(mm)	Tolerance(mm)
≤150	+0.5/+1.0
>150	+1.0/2.0

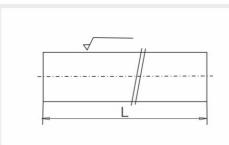

* The following service are available

30 DEGREE ROUND ROD WITH DOUBLE HELIX HOLE

Diameter D(mm)	Tolerance (mm)		TK (mm)	Tolerance (mm)	d (mm)	Tolerance (mm)	Length L (mm)	Series number
6.3	-0/+0.3	32.65	2.40	±0.20	0.70	±0.15	330	RH063*****
7.3	-0/+0.3	38.09	3.50	±0.20	1.00	± 0.15	330	RH073*****
8.3	-0/+0.3	43.53	2.40	±0.20	0.70	± 0.15	330	RH083*****
8.3	-0/+0.3	43.53	3.80	±0.20	1.00	± 0.15	330	RH083*****
9.3	-0/+0.3	48.97	4.50	±0.30	1.40	± 0.15	330	RH093*****
10.3	-0/+0.3	54.41	2.60	±0.20	0.70	± 0.15	330	RH103*****
10.3	-0/+0.3	54.41	4.50	±0.30	1.40	± 0.15	330	RH103*****
11.3	-0/+0.4	59.86	4.90	±0.40	1.40	± 0.15	330	RH113*****
12.3	-0/+0.4	65.30	3.80	±0.40	1.00	±0.20	330	RH123*****
12.3	-0/+0.4	65.30	5.85	±0.40	1.40	±0.20	330	RH123*****
13.3	-0/+0.4	70.74	6.10	±0.40	1.75	±0.20	330	RH133*****
14.3	-0/+0.4	76.18	6.70	±0.40	1.75	±0.20	330	RH143*****
15.3	-0/+0.4	81.62	7.30	±0.40	1.75	±0.20	330	RH153*****
16.3	-0/+0.5	87.06	7.90	±0.40	1.75	±0.20	330	RH163*****
17.3	-0/+0.5	92.50	8.50	±0.40	1.75	±0.20	330	RH173*****
18.3	-0/+0.5	97.95	9.15	±0.40	2.00	±0.25	330	RH183*****
19.3	-0/+0.5	103.39	9.70	±0.50	2.00	±0.25	330	RH193*****
20.3	-0/+0.5	108.83	9.90	±0.50	2.00	±0.25	330	RH203*****
22.3	-0/+0.5	119.71	11.10	±0.50	2.00	±0.25	330	RH223*****
25.3	-0/+0.5	136.03	12.80	±0.50	2.00	±0.25	330	RH253*****

Ordering example


The order model is XR10ST, outer diameter is 6.3mm, and length is 330mm, which is indicated by RH063330ST.


Length(mm)	Tolerance(mm)
≤150	+0.5/+1.0
>150	+1.0/2.0

* The following service are available

FINE-GROUND ROD <

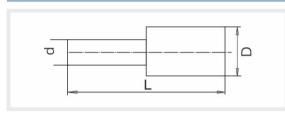
Ordering example

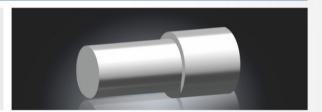
The order model is XR10S, outer diameter is 8.0mm, and length is 330mm, which is indicated by RS080330SM.

Diameter(mm)	Tolerance(mm)
All	ISO h6
Length(mm)	Tolerance(mm)
≤150	+0.5/+1.0

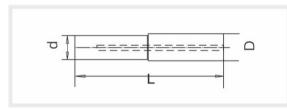
* The following services are available

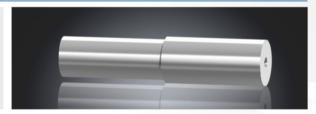
Diameter	Length	
D(mm)	L(mm)	Series number
3.0	≤150	RS030****M
4.0	≤150	RS040****M
5.0	≤150	RS050****M
6.0	≤150	RS060****M
7.0	≤150	RS070****M
8.0	≤150	RS080****M
9.0	≤150	RS090****M
10.0	≤150	RS100****M
11.0	≤150	RS110****M
12.0	≤150	RS120****M
13.0	≤150	RS130****M
14.0	≤150	RS140****M
15.0	≤150	RS150****M
16.0	≤150	RS160****M
17.0	≤150	RS170****M
18.0	≤150	RS180****M
19.0	≤150	RS190****M
20.0	≤150	RS200****M
21.0	≤150	RS210****M
22.0	≤150	RS220****M
23.0	≤150	RS230****M
24.0	≤150	RS240****M
25.0	≤150	RS250****M
26.0	≤150	RS260****M
27.0	≤150	RS270****M
28.0	≤150	RS280****M
29.0	≤150	RS290****M
30.0	≤150	RS300****M
31.0	≤150	RS310****M
32.0	≤150	RS320****M
33.0	≤150	RS330****M
34.0	≤150	RS340****M
35.0	≤150	RS350***M
36.0	≤150	RS360****M
37.0	≤150	RS370****M
38.0	≤150	RS380****M
39.0	≤150	RS390****M
40.0	≤150	RS400****M

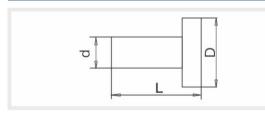



> FINE-GROUND ROD

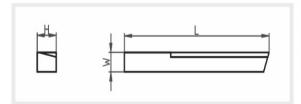
(customized according to customer's drawing)

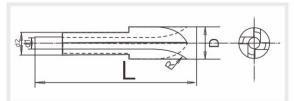



Step Bar



Blind-hole step bar





Knife Blade

* Preform tool blank

INTRODUCTION OF POST PROCESSING

SHAREATE has been quietly providing high-quality cemented carbide products to meet your expectations. In addition to cemented carbide products, SHAREATE also provides a range of post-processing services, a variety of shape and geometry of the Bar, all-round to meet the needs of customers and the tool market, just by providing the blueprints, SHAREATE can quickly respond to your needs with a combination of superior manufacturing capabilities and a variety of shape-shifting technologies.

Signs	Services	Account	
	Cut Off	Provide round bar cutting service of any standard length or special length.	
h6	Fine grinding	Fine grinding to H6 tolerance, or other fine grinding tolerance, according to the drawing.	
	Chamfer Angle	Provide round-rod chamfering service to improve your processing efficiency.	
	Segment difference	Provide repair service for large outside diameter or high segment difference to reduce grinding time.	
	Gutter processing	Make all kinds of standard gutter.	

TECHNICAL INFORMATION <

* Technical parameters of round Rod

Outside diameter		Ovality	
	Outside diameter of the Rod to be measured		Ovality is the radial distance between two concentric circles, including the circumference of the section of the bar
Length		Bore diameter	
	The length of the Rod to be measured	•	Diameter of inner cold hole of round Rod
Degree of finish		Eccentricity ratio	
Ra _{nza}	The surface quality of a round bar is usually expressed in terms of the maximum average finish Ra		The eccentricity ratio represents the deviation of th center of the Round Bar from the pitch circle formed by the inner cold hole, the deviation of the center of the Round Bar with a single straight hole and the center of the inner cold hole from the round bar
Flatness		Spiral Angle	
4	A rotating Rod, mounted on two support points, is measured in the middle of its maximum curvature		The Helix Angle represents the angle between the Longitudinal center line and Helix of the Rod
Degree of concentricity		Cylindricity	
	Maximum bending of a Rod		The deviation of the surface of a bar from that of an ideal cylinder

10

www.shareate.com SHARE TOOLS LTD.

* Problems and countermeasures of hole machining

	Problems	Reasons	Countermeasures
	D. I	The cutting conditions are notsuitable	For high-speed applications Increase feed rate
	Rake wear	Improper cutting oil	In the case of internal cold drilling, reduce oil supply output Use High lubricity cutting oil
	Collapse at the edge of the blade	Poor penetration	Reduce the feed rate at the drill entry Additional pre-processing procedures, plane occlusion
		Insufficient rigidity of equipment and material to be cut	Change cutting conditions to reduce resistance Improve the clamping strength of the paring material
		Insufficient strength of bladetip	Increase the width of the blade Increase the passivation treatment capacity of cutting edge
		The processing conditions are not suitable	Reduce cutting speed Lower the feed
		Improper cutting oil	Use High lubricity cutting oil
		Insufficient rigidity of equipment and material to be cut	
Bit		Insufficient strength of	Increase the passivation treatment capacity of cutting edge
Damage	The collapse around the cutting edge	blade tip	Reduce the rake angle of front and back tool
3	the outting eage	From the bite around the cutting edge	Increase the width of the edge band
			Lower the feed
		Intermittent cutting during	Increase the passivation treatment capacity of cutting edge
		penetration	Reduce the rake angle of front and back tool
		The processing conditions are not suitable	Reduce cutting speed
			Use High lubricity cutting oil
		Improper cutting oil	Increase the supply of cutting oil
	Abrasion of the edge band	Residual wear of edge band	Re-grind early to ensure reverse taper
	cage barra		Increase the reverse taper
		Improper tool design	Reduce the width of the edge band
	Fracture of drill bit body		Use the most suitable cutting conditions and tools
		Chip accumulation	Increase the supply of cutting oil
		The clamping strength of the fixing tool is insufficient	Use Strong fixing tools
		Insufficient rigidity of equipment and material to be cut	Improve the clamping strength of the paring material
	Large enlargement of aperture	Poor penetration	Reduce the feed rate at the drill entry
			Reduce cutting speed
			Additional pre-processing procedures, plane occlusion
		The drill bit is not rigid enough	Use The drill bit that is most suitable for deep holes
			Improve the integral rigidity of drill bit
		D'11	Improving the installation precision of drill bit
Poor		Bit beat	Improving the clamping rigidity of drill bit
machining		Insufficient rigidity of equipment and material to be cut	Improve the clamping strength of the paring material
accuracy		The cutting conditions are not	Increase cutting speed
	Poor finish surface	suitable	Lower the feed
	roughness	Improper cutting oil	Use High lubricity cutting oil
		Poor penetration	Increase feed rate
	Bad straightness	Improper bit installatio	Improving the installation precision of drill bit
		5040 * 0 10 * 0 100 S	Improving the clamping rigidity of drill bit
		Insufficient rigidity of equipment	Improve the clamping strength of the paring material
		and material to be cut	INTO A double-edged belt
		The processing conditions are	Increase feed rate
Daar	Chip clogging	not suitable	Increase cutting speed
Poor		Poor removal of chips	In the case of internal cold drilling, reduce oil supply output
handling		The processing conditions are	Increase feed rate
nanuling	Constant chipping	not suitable	Increase cutting speed
	oonotant ompping	Good cooling effect	In the case of internal cold drilling, reduce oil supply output
		Poor sharpness of cutting edge	Reduce the passivation treatment of cutting edge

TECHNICAL DIRECTION

Problems and countermeasures of End Milling Cutter machining

Questions		Why		Countermeasures	
Cutting edge damage	Extreme wear	Cutting conditions, tool shape, tool material	Fast cutting speed, fastfeeding speed, small peripheral back tool angle,poor wear resistance	Reduce the cutting speed, select the appropriate peripheral back angle, choosehigh wear resistance of the base material, choose the coated blade	
	Small opening	Cutting conditions, mechanical perimeter	Feed speed is large, cutting depth is large, the blade overhang is long, the material being cut is weak, the tool installation is unstable	Lower feed speed, smaller depth of cut, reduce overhang, firmly fixed cutting material, improve the strength of the tool	
	Defacement	Cutting conditions, tool shape	Feed speed is large, cutting depth is large, blade overhang is long, milling along, core thickness is small	Reduce feed speed, smaller depth of cut, reduce overhang, select short blade tools, select the appropriate core thickness	
In the news	Wall collapse	Cutting conditions, tool shape	Feed speed, cutting depth, blade overhang, milling along, spiral angle, core thickness	Reduce feed speed, reduce the depth of cut, reduce the amount of overhang, the use of reverse milling, the use of small spiral angle milling cutter, choose the appropriate core thickness of the milling cutter	
	Poor finish finish	Cutting condition	Fast cutting speed, fast feeding speed, chip embedding	Reduce feed speed, implement Air Cooling, increase the concave angle of the bottom edge	
	Vibration in cutting	Cutting conditions, tool shape, machine perimeter	High cutting speed, reverse milling, Long Blade Overhang, big rake angle, weak material support, unstable tool installation	Cutting speed is reduced, milling is adopted, overhang is reduced, proper rake angle is selected, the material is firmlycut, and the strength of thetool is improved	
	Chip clogging	Cutting conditions, tool shape	Fast feeding speed, large cutting depth, many blades, chip embedding	Reducing feed speed, cutting depth, cutting edge number, implement air cooling	

7